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Abstract-Steady natural convection in a square, water-tilled enclosure heated from below and cooled on 
one vertical side is studied analytically and numerically. Expansions for small Rayleigh number are 
developed to order Rd. It is found that the first contribution to the convective heat transfer occurs at 
order Rd. Asymptotic expressions are found for the temperature and heat transfer near the flux singularity 
on the enclosure floor. Finite difference numerical simulations indicate that the present condition (heating 
from below) is quite distinct from the case of cooling from below and heating on one vertical wall. 
Convective heat transfer is shown to be most significant when slightly less than half of the lower surface 

is heated. 

1. INTRODUCTION 

NATURAL convection in fluid-filled rectangular enclos- 
ures has received considerable attention over the past 
several years. This attention is due in part to the wide 
variety of important applications that involve natural 
convection processes. These applications span such 
diverse fields as solar energy collection; nuclear reac- 
tor operation and safety ; the energy efficient design 
of buildings, rooms, and machinery ; waste disposal ; 
and fire prevention and safety. 

Most of the previous work has addressed natural 
convection in rectangular geometries due to either a 
vertically or horizontally imposed heat flux or tem- 
perature difference. Rather little work has been car- 
ried out for more complex boundary conditions such 
as the case when the imposed gradient is neither hori- 
zontal nor vertical. Kimura and Bejan [I} considered 
natural convection in a rectangular enclosure with the 
entire lower surface cooled while one vertical wall 
was heated. Constant heat flux as well as isothermal 
boundary conditions were considered. Small Rayleigh 
number expansions indicated [l] that qualitative fea- 
tures of the Ra -+ 0 flow are relatively insensitive to 
the nature of the boundary condition. Numerical 
simulations carried out for the isothermal case indi- 
cated [l] a single-cell flow, the center of which draws 
nearer and nearer to the singular corner (where tem- 
perature is discontinuous) with increasing Rayleigh 
number. In all cases the enclosed fluid remained stably 
stratified. Anderson and Lauriat [2] studied the flow 
in a square enclosure with a uniform flux or isothermal 
(heating) condition on the lower surface while one 
vertical wall was cooled isothermally. Numerical cal- 
culations [2] for flux Rayleigh numbers in the range 
106-10’o indicated a single cell flow with a stable 
boundary layer adjacent to the heated floor. Exper- 
imental observations [2] confirmed the absence of 
BCnard-type instabilities for flux Rayleigh numbers as 

large as 5 x 1013. Torrance and Rockett [3] numeri- 
cally studied the convection of air in a vertical cyl- 
indrical enclosure which was cooled on the boundary 
except for a small hot spot centered on the lower 
surface. Torrance ef af. [4] investigated convection in 
this geometry experimentally while a similar problem 
was studied numerically by Greenspan and Shultz [5]. 
In ref. [3] it was found that for a Grashof number less 
than 4 x lo9 the ilow consisted of a single, steady 
toroidal roll with upflow near the axis of the cylinder. 
For Grashof numbers greater than about lo6 the flow 
was dominated by a rising column of hot fluid near 
the vertical axis of the cylinder just above the hot spot. 
The center of the toroidal cell moved toward the upper 
outside corner of the cylinder as Grashof number was 
increased. For Grashof numbers exceeding 4 x 10’. 
a large thermally stratified region devefoped 
and occupied most of the enclosure interior. Finite 
heat transfer rates were obtained in ref. [3] by 
assuming a ramp temperature change at the edge of 
the hot spot. Chao et al. [6] experimentally and 
numerically investigated natural convection in an 
inclined box with the lower surface half-heated and 
half-insulated and the upper surface cooled. It was 
found [6] that a single pair of rolls developed when 
half of the lower surface was heated. It was also shown 
that partial heating of the lower surface resulted in 
convective motion for all Rayleigh numbers (>O). 
Shiralkar and Tien [7] carried out a numerical inves- 
tigation of convection in a rectangular enclosure due 
to temperature gradients imposed in the horizontal 
and vertical directions simultaneously. It was found 
[7] that a strong stabilizing vertical temperature gradi- 
ent resulted in lower vertical velocities and the gen- 
eration of secondary vortices at opposite corners of 
the enclosure. For strong destabilizing vertical gradi- 
ents, the stabie stratification in the enclosure core 
was destroyed and unstably stratified thermal layers 
formed adjacent to the upper and lower surfaces of 

2433 



2434 M. NOVEMBER and M. W. NANSTEEL 

9 
h 

i 
k 
I 
L 

n 

NU 
NUi 

P 

P 
Pr 

4i 

q”(X) 

Q(x) 

r 

Ra 
t 
i 
T 

NOMENCLATURE 

gravitational acceleration 
mesh spacing 
unit vector in vertical direction 
thermal conductivity 
length of unheated section 
enclosure width 
normal coordinate 
Nusselt number, Q( l)/Q(l),Ond 
coefficient in expansion (23) 
dimensionless pressure, 

@+ P&J?L21&Vc2 
pressure 
Prandtl number, V&X, 
coefficient given by equation (22) 
horizontal energy flux averaged over 
vertical cross section 
dimensionless horizontal heat transfer 
rate, equation (7) 
radial coordinate 
Rayleigh number, gp( F,, - ~c)L3/v,tl, 

dimensionless time, 6,/L* 

time 
dimensionless temperature, 
(i;- i;,)/@- FJ 
temperature 
coefficient in expansion (13) 
dimensionless horizontal component 
of velocity, UL/v, 

horizontal component of velocity 

U dimensionless velocity, iiL/v, 

ii velocity 
V dimensionless vertical component of 

velocity, fif+, 
lJ vertical component of velocity 
X dimensionless horizontal coordinate, 

Z/L 

x horizontal coordinate 

Y dimensionless vertical coordinate, j/L 

J vertical coordinate. 

Greek symbols 

; 

thermal diffusivity 
coefficient of thermal expansion 

& dimensionless length of unheated 
section, l/L 

e angular coordinate 
V kinematic viscosity 

P density 

$ 

dimensionless streamfunction, $/vc 
streamfunction 

lcli coefficient in expansion (11) 
0 dimensionless vorticity, WL*/v, 

0 vorticity 

wi coefficient in expansion (12). 

Subscripts 
C cold wall 
cond pure conduction 
h hot surface. 

the enclosure. Poulikakos [8] examined the convection 
in an enclosure with heated and cooled regions on a 
single vertical wall. It was noted [8] that convective 
patterns differed markedly depending on whether the 
heated section was above or below the cooled section 
of the boundary. When the lower portion of the ver- 
tical surface was heated, convective motion was more 
intense and thermal penetration was more complete 
than when the upper portion of the surface was 
heated. 

The objective of the present study is to clearly 
understand the heat transfer mechanisms present 
when a portion of the lower surface of a water-filled 
rectangular enclosure is heated while one of the ver- 
tical walls is cooled. Special attention will be given to 
the effects of heating intensity (Rayleigh number) and 
the length of the heated segment on the resulting flow 
structure, tempertiture field and heat transfer. Com- 
parisons with the findings of ref. [l] (heating on one 
side and cooling from below) will be made. 

2. FORMULATION 

Consider the square, fluid-filled enclosure, Fig. 1, 

1 
segment 0 < 2 < L- 1 while the right-hand wall is 
maintained at F = Fc < F,,. The remaining portion 
of the boundary is thermally insulated. Assuming that 
the temperature difference (T,, - TJ is small so that 
the Boussinesq assumption is valid and that fluid 
motions are confined to the plane of Fig. 1, the time- 

FIG. 1. Square enclosure with heating from below and cooling . 
in which the lower surface is heated (T = T,,) over the on one side 
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dependent equations of mass, momentum and energy 
conservation in dimensionless form are 

divu = 0 (I) 

DT 
1V2T 

Dt = Pr 

where 

P = (B+PAW21P,v,z 

T= (~-~J/(~h-~J 

and distance, velocity and time have been made 
dimensionless with the quantities L, v,/L and L’/v,. 
Conditions on the boundary are 

u=o 

T(x,O) = 1, x < 1-s 

g(x’ 0) = 0, X>l-& 

where E = I/L. Note that on the lower boundary 
x = 1 --E is a point of flux singularity [9, lo]. Elim- 
inating p from equation (2) and introducing the 
streamfunction $, and vorticity o 

w w 
U=-, ay v= -ax’ o=_v21j (4) 

yields 

aT a*aT a$a7- i 
,+-----=--V2T 

ay ax ax ay (6) 

with 

on the boundary. 

The non-dimensional rate of energy transfer across 
any vertical plane is 

few 
Qcx) = k(Th _ Tee, =l (PrTu-g)dy. (7) 

Note that under steady conditions Q(x) = constant 
for x > 1 -E. The corresponding Nusselt number is 

NM = QU>/QUL+ (8) 

3. HEAT TRANSFER NEAR THE FLUX 

SINGULARITY 

In the neighborhood of the mixed boundary point 
(y = 0, x = 1 --a) energy transport in the fluid is 

dominated by conduction because of the no-slip con- 
dition. Hence the temperature field asymptotically 
near the singularity will be that due to conduction 
only. This can be shown by considering a system of 
polar (r, 0) coordinates (centered at the flux singu- 
larity with 0 = 0 on the adiabatic surface) and sub- 
stituting the asymptotic forms 

ICI - rYV% Y>l 

T- 1 +r”g(@, q 2 0 
r-+0 

into the steady form of equations (4)-(6). This results 
in a pair of eigenvalue problems [ 1 l] for the functions 
g(0) andf(0). It follows [l l] that the limiting (r + 0) 
behaviors are 

* - C,r2 sin’ 6 

T-l+C,r”‘cos(8/2) r-+o 1 
(9) 

where C, and C2 are constants which are determined 
by conditions imposed in the far field. The first equa- 
tion of equations (9) corresponds to a flow parallel to 
the wall, while the second is identical to the relation 
found in ref. [lo] for the asymptotic behavior in a 
solid. It follows that the heat flux through the lower 
boundary near the singularity is of the order of r- ‘I’, 
i.e. 

r + 0. (10) 

However, the total, integrated heat transfer at the 
surface between the singularity and some location r, 
on 6 = x, is bounded and is of the order of r ‘/2. Hence, 
although total energy flow is bounded the local flux 
is not and hence great care must be exercised near the 
singularity in numerical simulations [9]. 

4. SMALL RAYLEIGH NUMBER CALCULATIONS 

It is assumed that $, o and T can be expanded in 
integral powers of Ra, hence 

$ = $, Ra+$, Ra’f ... (11) 

w = w, Ra+w, Ra2+ ... (12) 

T= T,,+T, Ra+ ... (13) 

Substitution of these expansions in the steady forms 
of equations (4k(6) results in the following systems 
for the functions tii, w, and T, : 

V’T, = 0 (14) 

(15) 

v2*, = -w, (16) 

V2T 
I 

= pr 3 
ay 

aT0 _- 
ax 

ah 
ax 

vzw2= _;r~+w3 
ay ax 

;; a; (18) 
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Table 1. Variation of the maximum values of $ ,, tiq, T, and T, with mesh size, 
E = l/3 

Mesh 

13 x 13 
25x25 
43x43 
61 x61 

(ti Jmar x 104 (((IJmax x IO8 (T,),,, x 104 (TJmax x 10* 

1.29 3.13 1.29 3.62 
1.24 3.03 1.29 3.74 
1.23 3.02 1.29 3.76 
1.23 3.02 1.29 3.77 

(19) 

%ar,_!&aT, 
ay ax ax ay 

The corresponding conditions on the boundary are 

I), = 2 = 0, i> 1 

~(o,y)=~(x,l)=o, i>O 

T&,0) = 1, x < 1-a 

T,(x,O)=O, x> l-a, i> 1 

gj (X, 0) = 0, x> l--E, i 2 0. 

From equations (7) and (13) the heat transfer at the 
cold wall becomes 

Q(1) = qc,+q, Ra+qzRa’+ (21) 

where 

’ aT, 
4<= - ax(‘,y)dy, i 2 0. (22) 

Note from equations (14) and (22) that the leading 
term, qo, represents the heat transfer due to pure con- 
duction. Hence the Nusselt number 

Nu = 1 +Nu, Ra+Nu2 Ra2+ .‘. (23) 

where 

Nu, = q,/qo, i 2 1. 

Terms in expansions (11 t( 13) were calculated to 

order Ra2 by a second-order accurate finite difference 
technique in conjunction with a uniform 61 x 61 mesh. 
Various criteria were used to test for convergence with 
mesh size, some of which are shown in Table 1. Note 
also that 

tin Figs. 2, 4 and 5 the notation T = O(O.l)l indicates 
that contours of Tare plotted for nine equally spaced values 
of T between zero and unity. 

s ‘--E aT, 

%(X,o)dx = s 
o’~(L~)d~, i 2 0. 

0 

This criterion, however, is not useful for evaluating 
convergence of the numerical scheme due to the pres- 
ence of the flux singularity (x = 1 -a, y = 0) at each 
order. That is, large errors are incurred when attempt- 
ing to numerically integrate heat flux in the neigh- 
borhood of this point. Fortunately, however, the in- 
fluence of the singularity does not penetrate very far 
into the solution domain so that some distance away 
from the singularity the solution is not affected [12]. 

Contours of the functions T,,, I/I, and T, are shown 
in Fig. 2 for the case E = l/Z.? Note that, to lowest 
order, flow in the enclosure consists of a single clock- 
wise cell in which cool fluid descends along the cold 
wall and is swept along the lower surface of the enclos- 
ure where it is rapidly heated in the vicinity of the flux 
singularity, equation (10). This warmer fluid then rises 
adjacent to the unheated left-hand vertical wall of the 
enclosure. Note that the flow symmetry present at this 
order for the classical rectangular enclosure with a 
horizontally imposed temperature gradient [ 131 does 
not exist here. The cell is skewed somewhat toward 
the lower right quadrant of the enclosure. Qualitative 

T,,=OlO.l)l 

b11.9 

IO 

ii/ii!! 

0 

7.5 -2.5 
5 -6.9 

2.5 
0 -5 

T, x 10’ 

FIG. 2. Contours for E = l/2. 
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FIG. 3. Variation of qO, q2 and NM, with E. 

features of the flow pattern changed little with chang- 
ing E while circulation intensity peaked slightly near 
E = l/2. This behavior is reasonable since the E = 1 
case results in no convection (T = 0) and in the E = 0 
case isotherms emerge radially from x = 1, y = 0 [14]. 
For E > 0 isotherms above the insulated section tend 
to be more nearly vertical (i.e. parallel to the gravity 
vector) so that there is a greater potential for density 
differences to cause convective motion than in the 
E = 0 case. The flow field shown in Fig. 2 ($,) gives 
rise to the temperature perturbation (T,). Note that 
the clockwise motion convects cool fluid along the 
cold wall and down into the lower right-hand quad- 
rant of the enclosure resulting in a negative tem- 
perature perturbation there. At the same time, warm 
fluid adjacent to the hot surface is convected upward 
where it appears as a positive perturbation in the 

upper portion of the enclosure. 
From the numerical computations it was concluded 

that the first correction to the conduction temperature 
field, T,, does not contribute to the convective 
enhancement of the heat transfer, i.e. q, = 0. Increas- 
ingly fine mesh discretization indicated that q, cc hZ 
for mesh spacing h + 0. Hence it is assumed that the 
very small, numerically obtained values of q, are due 
to discretization error in the second-order accurate 
scheme used here (hence the quadratic dependence on 
h). This result (ql = 0) is easily demonstrated in the 
case of an enclosure with differential heating in the 
horizontal direction [13, 151. Figure 3 shows the con- 
duction component q,, as well as the first correction 
to the heat transfer due to convection q2 (and NuZ) as a 
function of E. Note that conduction increases without 
bound as E -+ 0 since then, the heated and cooled 
surfaces are in direct contact [14]. Also, the convective 
enhancement of the heat transfer Nu2 = qz/qo 
is seen to be largest for E N 0.6 where circulation 

Table 2. Variation of horizontal energy flux Q(X) and 
maximum streamfunction with mesh size, Ra = lo’, E = 2/3 

Mesh ~(213) Q(l) * mar 

31 x 31 2.86 2.98 -2.16 
43x43 2.81 2.86 -2.14 
61 x 61 2.78 2.80 -2.13 

was also a maximum. By comparison with the full 
numerical solutions, to be discussed below, expansion 
(23) (to order Ra*) is found to be quite accurate for 
Ra < O(l0’). 

5. RESULTS FOR MODERATE VALUES 

OF RAYLEIGH NUMBER 

Equations (4)-(6) were solved by a false transient 
finite difference technique. The alternating direction 
implicit method in conjunction with central diff- 
erencing was used in almost all cases. For Ra = lo6 
and E = I /6 upwind differencing of convective deriva- 
tives was found to be necessary in order to obtain a 
stable solution. Calculations were made on increas- 
ingly fine meshes until the horizontal energy flux, 
equation (7) across two vertical sections of the enclos- 
ure (x > 1 -E) differed by less than 5% for a given 
mesh and the maximum value of the streamfunction 
changed by less than 1% with mesh size (Table 2). A 
uniform 61 x 61 mesh was the finest used. 

Figure 4 shows contours of T and $ for the enclos- 

a = lo3 

Ra = 10‘ 

Ra = 10’ 

FIG. 4. Contours for E = 0; T = O(O.l)l, $. 
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ure with the entire lower surface heated, E = 0. 
In each case (Ra = 103, 104, 105) isotherms emerge 
radially from the lower right-hand corner of the 
enclosure where heat flux on both the vertical and 
horizontal surfaces is unbounded [14]. For small Ra 
(= 103) the temperature distribution deviates only 
slightly from the diagonally symmetric conduction 
distribution observed for Ra = 0. The weak clockwise 
recirculation tends to lift warmer fluid away from the 
hot surface (X 6 l/2) and into the upper portion 
of the enclosure. This results in a spreading of the 
isotherms in the lower left quadrant of the enclosure 
and compression in the upper right quadrant. As 
the recirculation intensity increases, Ra = 104, warm 
fluid is swept vertically upward along the left-hand 
adiabatic surface and then horizontally toward the 
upper section of the cold wall. This fluid is then cooled 
as it flows vertically downward along the cold wall. 
At a Rayleigh number of 10’ circulation has increased 
to a degree such that distinct thermal boundary layers 
can be observed adjacent to the heated and cooled 
surfaces. Note that the heated layer adjacent to the 
lower surface remains attached up to the turning cor- 
ner x = y = 0 though the density stratification in 
this layer is unstable. This observation agrees with the 
result of Anderson and Lauriat [2] in the case of a 
uniform flux boundary condition on the lower surface. 
It is not certain whether this layer would remain 
attached for smaller aspect ratio enclosures or sig- 
nificantly larger values of Ra. It is also observed that 
the central portion of the enclosure tends to become 
relatively inactive with little variation in temperature 

as Ra increases. The behavior found here is quite 
distinct from the behavior noted by Kimura and Bejan 
[ 1] for the case of cooling from below and heating on 
one vertical wall. For these thermal conditions cool 
fluid is swept along the lower surface and into the 
singular corner x = 1, y = 0 before rising adjacent 
to the heated vertical boundary. In ref. [I] the location 
of the streamfunction maximum moved toward the 
singular corner with increasing Ra and the fluid 
remained stably stratified throughout the enclosure. 
When cooling from below the intensity of circulation 
is much less than that found for the present boundary 
conditions. It seems that the convective cell observed 
in ref. [ 1] is somewhat confined to the singular corner 
region while in the present case convective effects 
are more uniformly distributed over the entire outer 
periphery of the enclosure. 

In Fig. 5 contours of T and I/J are shown for various 
insulation lengths E and Ra = 106. Comparison with 
Fig. 4 indicates that with the increase in Ra, thermal 
and hydrodynamic boundary layers have become 
more distinct and a small secondary cell has formed 
within the main cell near the cold wall. The appear- 
ance of secondary vortices at large Ra in the core of 
differentially heated enclosures was attributed to a 
sign change in the horizontal core temperature gradi- 
ent by Mallinson and de Vahl Davis [ 161. It is thought 
that a similar mechanism may be in effect here since 

E = l/6 

- 0.9 

-1.8 

-2 7 

~ 

-3.55 D -i.90 (3 -3.56 

E = 516 

FIG. 5,Contours for Ra = 106; T = O(O.l)l, $. 

aT/dx does take on positive values at some locations 
in the core for Ra 2 105. Also, Fig. 5 indicates that 
convection intensity decreases slowly’ and mono- 
tonically with increasing E (l/6 < E < 5/6) in contrast 
to the behavior noted at small Ra. However, this 
is not surprising since the flow structure arises as a 
consequence of the temperature field which is highly 
distorted for Ra & 0(104). Note that as the insulated 
section increases in length, E -+ 1, the velocity and 
temperature fields approach the limiting, stagnant 
condition II = T E 0. For E = 5/6 most of the fluid 
in the enclosure is weakly but stably stratified. 

Figure 6 shows the variation of dimensionless heat 
transfer rate Q(1) = Qc with E for 0 d Ra < 106. It 
is observed that for each value of Ra heat transfer 
falls rather sharply to zero as E approaches unity. This 
is because the heat flux in the neighborhood of the 
mixed boundary condition (x $ 1 -E) is quite large 
(see equation (10)). Hence significant rates of heat 
transfer result even when only a small fraction of 
the lower boundary is heated. In this regime, E + 1, 
conduction heat transfer is dominant. It is dem- 
onstrated in ref. [lo] that over 10% of the total heat 
transfer from a surface may occur over only 1% of 
the surface area adjacent to a flux singularity of the 
type encountered here. Note that for small values of 
Ra ($ 104), Fig. 6, heat transfer increases slowly with 
decreasing E (away from E = 1 and 0). However, for 
larger Ra (3 105) heat transfer increases quite sharply 
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e 

FIG. 6. Heat transfer variation with E. 

0 
0 0.2 0.6 0.6 0.6 1.0 

E 

FIG. 7. Nusselt number variation with E. 

over the full range of E. This is because for high Ray- 
leigh numbers the strong convection sweeps cool fluid 
over the entire length of the heated section on the 
lower boundary so that a rather high rate of heat 
transfer exists even far downstream of the flux singu- 
larity (see also Fig. 4). For values of E approaching 
zero the dominant mode of heat transfer is again 
conduction as most of the energy transfer (tending 
toward infinity as E + 0) occurs in the neighborhood 
of the lower right-hand corner of the enclosure. As 
E + 0 the flux singularity degenerates into a singularity 
of higher order for which the flux is non-integrable 
[14]. Figure 7 shows Nusselt number as a function of 
E. Since Nu here is a relative measure of the total heat 
transfer with respect to the heat transfer due purely 
to conduction, equation (8) Nu tends to unity for 

E + 0, 1. Note also that the curves in Fig. 7 exhibit 
a maximum near E = 0.6. Hence energy transport by 
convection is most significant when slightly less than 

one-half of the lower boundary is heated, 

6. CONCLUSIONS 

Steady natural convection in a water-filled 

enclosure with one vertical wall cooled and 

square 
partial 

heating of the lower surface has been studied. The 
conduction dominated behavior near the mixed 
boundary point was shown to consist of a parallel 
shear flow and heat flux of the order of r--‘12. Expan- 
sions of streamfunction and temperature for small 
values of the Rayleigh number were obtained to order 
Ra’. It was shown that the first correction to the 
Nusselt number for convective effects occurred at 
order Ra2 and was largest near E = 0.6. Finite differ- 
ence solutions to the full equations of motion were 
obtained for 0 < Ra < lo6 and several values of E in 
the range 0 < E < 1. The flow structure was found to 
consist of a single clockwise cell with strong thermal 
boundary layers adjacent to the heated and cooled 
surfaces for Ra 3 O(l0’). The heated layer on the 
lower surface remained attached over the entire hori- 
zontal span of the enclosure in all cases. The flow 
structure and temperature field in the present study 
differed dramatically from the behavior reported by 
Kimura and Bejan [l] in which the enclosed fluid was 
cooled from below (E = 0) and heated along one 
vertical side. Also it was found that rather high rates 
of heat transfer persist even when a substantial 
portion of the lower surface is insulated. Nusselt 
number was shown to reach a maximum when the 
insulation spans slightly more than half of the lower 
surface. 
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CONVECTION NATURELLE DANS DES ENCEINTES RECTANGULAIRES 
CHAUFFEES PAR LE BAS ET REFROIDIES SUR UN COTE 

R&u&--On &die analytiquement et numbriquement la convection naturelle permanente dans une 
enceinte carrge, remplie d’eau chauffke par le bas et refroidie sur un cBtt vertical. Des dkveloppements pour 

un petit nombre de Rayleigh sont obtenus B l’ordre Ra2. On trouve que la premiire contribution B la 

convection thermique se produit g I’ordre Ra2. Des expressions asymptotiques sont trouvkes pour la 
temperature et le transfert thermique prts de la singularitt de flux au plancher de la cavitt. Des simulations 
numeriques par diffbrences finies montrent que la condition &udi&e (chauffage par le bas) est tout B fait 

distincte du cas du refroidissement par le bas et chauffage sur un c8ti vertical. Le transfert thermique 
convectif est plus significatif quand un peu moins de la miotie de la surface infirieure est chauffke. 

NATURLICHE KONVEKTION IN RECHTWINKLIGEN HOHLRjiUMEN DIE VON 
UNTEN BEHEIZT UND AN EINER SEITE GEKtiHLT WERDEN 

Zusammenfassung-Die stationlre natiirliche Konvektion in einem quadratischen, wassergefiillten 
Hohlraum, der von unten beheizt und an einer senkrechten Seite gekiihlt wird, wird analytisch und 
numerisch untersucht. Fiir kleine Rayleigh-Zahlen werden Entwicklungen bis zur Ordnung Ra2angegeben. 
Es zeigt sich, da13 der erste Beitrag zum konvektiven WCrmetibergang bei der Ordnung Ra* auftritt. 
Asymptotische Ausdriicke werden fiir die Temperaturverteilung und den WCrmeiibergang in der NLhe der 
Str6mungssingularitgt am Boden des Hohlraums angegeben. Numerische Simulationen mit dem Finite- 
Differenzen-Verfahren deuten an, daO die vorliegende Bedingung (Heizen von unten) viillig verschieden 
vom umgekehrten Fall (Kiihlen von unten, Heizen an einer vertikalen Wand) ist. Es wird gezeigt, da13 der 
konvektive Wlrmeiibergang am intensivsten ist, wenn etwas weniger als die HPlfe der unteren Flsche 

geheizt wird. 

ECTECTBEHHAR KOHBEKUWR B IIOJIOCTHX I-IPRMOYI-OJIbHOI-0 CEgEHkll I’IPH 
HAI-PEBE CHH3Y H OXJIA~EHHH CBOKY 

AIMOTPUJIS-AIMJIHTHY~CKH H =iHcneHHo uccnenoeaaa cTamioHapHan ecTecrBeHHaK KoHaeKmw Born a 

~OJIOCTU KBaiQXlTHOrO CeSeHHK, HaIpZBaeMOfi CHB3y II 0XJIaIKAaeMOi-i BAOJIb 0nHOi-i BepTHKUbHOe 

CTCHKH. B Ka’ieCTBe MaJIOr0 napaMeTpa SiCnOJIb3yeTCa VHCJIO P3JIe5I, pa3JIOmeHEie n0 KOTOpOMy BeLleTCIl 

C TO’iHOCTbKI 110 KBWpaTE’lHblX ‘iJIeHOB. 06HapyxeH0, ‘IT0 BlIHSIHUe KOHBeKTHBHOrO TenJIO”epeHOCa 

llpOaBJIKeTCa B KBanpaTWiHOM npH6JIHuteHHH n0 YHCJIy P3JleK. nOJly’leHbl aCAMnTOTHVeCKHe BbIpa~eHHa 

nnK TehmepaTypm H TennonepeHoca n OK~~CTHOCTH 0~0608 ToqKB, Haxonnme%cn Ha me nonocrH. %ic- 
neHHoe MonenHpoeaHlre M~~O~OM KoHeqHbIx paseocreii CssineTenbcrnyeT 0 TOM, ST0 yKa3aHHoe abtme 

,‘CJ‘OBHC (HaI’peB CHH3Y) nPHBOAElT I[ CTp,‘KT,‘pe WT‘XTBCHHOii KOHBCKIQiB, COBCpL”CHHO OTJIHqHOii OT 

Crpj’KTyPbI KOHBeKUHA npH OXJIaWeHWH CHH3y H HarpBe BaOnb BepTHKWIbHOfi CTCHKA. nOKa3aHO. ST0 

KOHB‘Z.KTHBHbIii TCnJlOnC~HOC RBJlJleTC’Cg HaH6onee HHTeHCHBHblM, eCn&I HaQeBaTb ‘,yTb MeHbme “O,,O- 

BtiHbl nOBepXHOCTH AHa IlOJIOCTti. 


